Адрес и схема проезда

Адрес склада: Москва, ул. Байкальская, д.7, стр 4.
Телефон:

(495) 772-07-39

Телефон/Факс:
Пояснение (как добраться):

Схема проезда на склад

Справка Области применения титана Титан в химической и нефтехимической промышленности
Титан в химической и нефтехимической промышленности

Химическая промышленность является одним из основных потребителей титана среди отраслей народного хозяйства. Ей по объемам потребления сейчас принадлежит второе место. Известно, что одной из важнейших проблем химических производств является проблема коррозии. Вместе с непрерывным увеличением объема производства растут издержки на защиту от коррозии и замену вышедшего из строя оборудования, потери от простоев и аварий. Наиболее эффективным путем решения этих вопросов является использование в химическом машиностроении новых коррозионностойких   материалов.


Титановые сплавы эффективно заменяют дефицитные материалы: сплавы на основе никеля (хастеллой «В» и «С», монель), высоколегированные стали (Х23Н28МЗДЗТ), нержавеющие стали типа Х18Н10Т, редкие, драгоценные и цветные металлы (тантал, ниобий, платину, медь, олово), пластмассы.


Анализ свойств материалов, которыми располагает современная техника, показывает, что титановые сплавы обеспечивают в химии снижение эксплуатационных затрат, безаварийность работы, возможность создания усовершенствованных конструкций, исключают дорогостоящие и трудоемкие работы по футеровке, и все это несмотря на более высокие первоначальные капитальные вложения при применении титанового оборудования. Эксплуатация уже первых титановых аппаратов подтвердила его ценность как конструкционного материала для основных химических и нефтехимических производств. Первым использованием титана в химической промышленности считается применение его фирмой «Титаниум металлз корпорейшен оф Америка» в 1954 г. для футеровки миксера, содержащего двуокись хлора и подвергавшегося коррозии и истиранию.


Титановое оборудование изготавливается и широко применяется в США, Японии, Англии, ФРГ, Франции, Щвеции, Италии. Имеется успешный опыт его применения в Чехословакии, а также Болгарин, Румынии.


Многочисленные сведения по коррозионной стойкости титана и его сплавов и областях рационального их применения содержатся в весьма обширной литературе.  К известным областям применении титана относятся производства: хлора и каустика, двуокиси хлора, хлорной кислоты, хлоридов и хлоратов калия, натрия, магния, марганца, перхлората аммония, гипохлорита кальция, натрия, трихлорацетата, гербицидов 2,4-Д,  хлорокиси меди, хлорной извести, хлористого аммония, карналита, соды, бертолетовой соли, глауберовой соли, мочевины, азотной и серной кислот, полихлоруксусных, карбопопых кислот, этилбепзола, изопропилбен-зола, органического стекла, симаэина, хлористого нитрозила, меламина, азокрасителей, 2-3-дихлорнафтехипона, 1,4-параоксидифи ниламина, паранитроинилина, неозона Д, изатина, хромолана, оптически отбеливающих веществ, полиэтилена, ацетальдегида, синтетического каучука (хлоронрепового, изопрепового), жидкого тиокола, вискозного волокна, капролактама, винилацетата, эпоксидных смол, фармацевтических средств (танина, галловой кислоты, настойки йода, экстрактов чебреца, диголен-пео, водяного перца, нашатырного аниса, грудного элексира, инъекционных растворов и др.), опреснения морской воды и др. Всего в настоящее время известно очень большое число промышленных сред (свыше шестисот), где поведение титана хорошо изучено. Существует ряд производств (двуокись хлора, хлориты, ацетальдегид, гербициды и ряд других, важнейших химических продуктов), где титан являемся единственным  коррозионностойким материалом.


Так как титановые сплавы относятся к сравнительно новым конструкционным материалам, то при их применении всегда была и остается целесообразной предварительная проверка коррозионной стойкости в конкретных производственных условиях. Промышленные среды, как правило, многокомпонентные системы, и часто даже небольшие добавки различных веществ,  содержащихся в технологических растворах в корне меняют коррозионное поведение титана. Добавки окислителей, а также присутствие ионов металлов оказывают ингибирующее действие на коррозию титана в растворах минеральных кислот. Так, известны факты, когда титановое оборудование не подвергалось коррозионному разрушению в течение 8 лет в среде, содержащей серную кислоту до 200 г/л, при наличии солей меди, никеля, железа при температурах до 80°С. Скорость коррозии титана в 20%-ной серной кислоте при температуре 90°С составляет 0,5 мм/год. В то же время титановые насосы длительно работают в производстве на перекачке растворов, содержащих соляную кислоту (5—15%) и примеси хлоридов железа, алюминия, магния.


Титан обладает высокой коррозионной стойкостью во влажном хлоре, его кислородных соединениях, хлорсодержащих органических соединениях, растворах большинства хлоридов, в условиях, в которых углеродистые и высоколегирующие стали подвергаются язвенной коррозии и коррозионному растрескиванию. Именно в хлорной промышленности титановое оборудование имеет наиболее широкое применение. Однако на практике имеют место случаи аномальной коррозии титана во влажном хлоре и растворах хлоридов. Повышенная коррозия наблюдается в местах возникновения щелей и зазоров — местах соединения коллекторов с электролизерам, развальцовки труб в решетке (без дополнительной приварки) между валом и рабочим колесом и т. д. Избежать этих явлений можно рациональным конструированием оборудования, использованием титановых сплавов, менее подверженных щелевой коррозии (сплав титана с 0,2% палладия).


В контакте с другими металлами в большинстве агрессивных сред титан является катодом и увеличивает коррозию контактирующего с ним металла. К таким металлам относятся нержавеющие стали X18H10T, Х17ГШМ2Т, Х15Г9Н4 и другие, латунь, бронза. Коррозия при этом имеет часто язвенный межкристаллитный характер, скорость ее зависит от соотношения площадей контактируемых деталей.


Наибольшее применение в химической промышленности нашел сплав 8Т1-0. Из серийных сплавов он в большинстве случаев обладает лучшей коррозионной стойкостью и рекомендуется для работы при температуре не выше 350°С. Перспективно применение в химической промышленности также сплава АТ-3, разработанного в ИМЕТ АН СССР И. И. Корниловым с сотрудниками. В ряде случаев сплав показывает лучшую по сравнению с другими серийными сплавами (включая и ВТ1-0) коррозионную стойкость (среды фармацевтической, пищевой промышленности, морская вода). К преимуществам сплава следует отнести и его более высокие (по сравнению с ВТ1-0) антифрикционные свойства.


Для сред, содержащих концентрированную соляную и серную кислоты при температурах кипения, муравьиную, фосфорную и другие, рекомендованы сплавы титана, легированные палладием и молибденом. Сплавы обладают высокой коррозионной стойкостью в восстановительных средах, более устойчивы против щелевой и других видов местной коррозии. Предназначены для замены сплавов на основе никеля (хастеллой, монель), тантала, платины, золота. В настоящее время среди химических производств наибольшее развитие получают производства полимерных материалов - пластмасс, синтетических смол, волокон, каучуков, спиртов и т. д. Получение их осуществляется в средах, обладающих агрессивными свойствами (концентрированные растворы серной, соляной   кислот в присутствии хлора, хлоропроизводных при повышенных температурах).  В этих условиях большинство  конструкционных  материалов — нержавеющие стали, сплавы типа хастеллой «В» и «С» - подвергаются интенсивной коррозии и коррозионному растрескиванию. Исследования свойств сплавов марок 4200 и 4201 и опытнопромышленные испытания оборудования из них позволяют рекомендовать  их   к  применению  в  производстве тетрахлоралканов, фурфурола, аминовых   кислот,  метилового   эфира   метикриловой кислоты, капролактама, вискозного волокна и др.